Centromeric and pericentric regions have long been regarded as transcriptionally inert portions of chromosomes. A number of studies in the past 10 years disproved this dogma and provided convincing evidence that centromeric and pericentric sequences are transcriptionally active in several biological contexts. In this chapter, we provide a comprehensive picture of the various contexts (cell growth and differentiation, stress, effect of chromatin organization) in which these sequences are expressed in mouse and human cells and discuss the possible functional implications of centromeric and pericentric sequences activation and/or of the resulting noncoding RNAs. Moreover, we provide an overview of the molecular mechanisms underlying the activation of centromeric and pericentromeric sequences as well as the structural features of encoded RNAs.
Transcription of Satellite DNAs in Mammals.
Biamonti G
2011
Abstract
Centromeric and pericentric regions have long been regarded as transcriptionally inert portions of chromosomes. A number of studies in the past 10 years disproved this dogma and provided convincing evidence that centromeric and pericentric sequences are transcriptionally active in several biological contexts. In this chapter, we provide a comprehensive picture of the various contexts (cell growth and differentiation, stress, effect of chromatin organization) in which these sequences are expressed in mouse and human cells and discuss the possible functional implications of centromeric and pericentric sequences activation and/or of the resulting noncoding RNAs. Moreover, we provide an overview of the molecular mechanisms underlying the activation of centromeric and pericentromeric sequences as well as the structural features of encoded RNAs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.