Cobalt silicide films have been prepared by rapid thermal annealing of cobalt layers sputter deposited on silicon substrates. We report on the evolution of silicide phases, surface and interface roughness as a function of the annealing temperature and silicon surface preparation. The characterizations are carried out by atomic force microscopy, X-ray diffraction, X-ray reflectivity, Raman spectroscopy, and transmission electron microscopy. The cleaning procedure of the silicon substrate affects the interface roughness and the silicide thickness, whereas little effects are found on the surface. On the other hand, surface roughness increases with annealing temperature

Effects of annealing temperature and surface preparation on the formation of cobalt silicide interconnects

C Wiemer;G Tallarida;
2003

Abstract

Cobalt silicide films have been prepared by rapid thermal annealing of cobalt layers sputter deposited on silicon substrates. We report on the evolution of silicide phases, surface and interface roughness as a function of the annealing temperature and silicon surface preparation. The characterizations are carried out by atomic force microscopy, X-ray diffraction, X-ray reflectivity, Raman spectroscopy, and transmission electron microscopy. The cleaning procedure of the silicon substrate affects the interface roughness and the silicide thickness, whereas little effects are found on the surface. On the other hand, surface roughness increases with annealing temperature
2003
Istituto per la Microelettronica e Microsistemi - IMM
cobalt silicide; x-ray reflectivity; raman spectroscopy; atomic force microscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/129955
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact