Atomic ordering of HCl-isopropanol (HCl-iPA) treated and vacuum annealed (1 0 0) InAs surfaces was studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and reflectance anisotropy spectroscopy (RAS). On the as-treated surface, a diffused (1 × 1) pattern is observed, which successively evolves to the ?2(2 × 4)/c(2 × 8) and (4 × 2)/c(8 × 2) ones after annealing to 330 °C and 410 °C, respectively. At the intermediate temperature of 370 °C, an ?2(2 × 4)/(4 × 2) mixed reconstruction is observed. Reflectance anisotropy spectra are compared with those of the corresponding reconstructions observed after As-decapping and found to be quite similar. Therefore we conclude that high-quality (1 0 0) InAs surfaces can be obtained by wet chemical treatment in an easy, inexpensive and practical way.
Well-ordered (1 0 0) InAs surfaces using wet chemical treatments
E Placidi;
2004
Abstract
Atomic ordering of HCl-isopropanol (HCl-iPA) treated and vacuum annealed (1 0 0) InAs surfaces was studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and reflectance anisotropy spectroscopy (RAS). On the as-treated surface, a diffused (1 × 1) pattern is observed, which successively evolves to the ?2(2 × 4)/c(2 × 8) and (4 × 2)/c(8 × 2) ones after annealing to 330 °C and 410 °C, respectively. At the intermediate temperature of 370 °C, an ?2(2 × 4)/(4 × 2) mixed reconstruction is observed. Reflectance anisotropy spectra are compared with those of the corresponding reconstructions observed after As-decapping and found to be quite similar. Therefore we conclude that high-quality (1 0 0) InAs surfaces can be obtained by wet chemical treatment in an easy, inexpensive and practical way.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.