Evolutionary robotics can be a powerful tool in studies on the evolutionary origins of self-organising behaviours in biological systems. However, these studies are viable only when the behaviour of the evolved artificial system closely corresponds to the one observed in biology, as described by available models. In this paper, we compare the behaviour evolved in a robotic system with the collegial decision making displayed by cockroaches in selecting a resting shelter. We show that artificial evolution can synthesise a simple self-organising behaviour for a swarm of robots, which presents dynamics that are comparable with the cockroaches behaviour.

Analysing an Evolved Robotic Behaviour Using a Biological Model of Collegial Decision Making

Trianni Vito;
2012

Abstract

Evolutionary robotics can be a powerful tool in studies on the evolutionary origins of self-organising behaviours in biological systems. However, these studies are viable only when the behaviour of the evolved artificial system closely corresponds to the one observed in biology, as described by available models. In this paper, we compare the behaviour evolved in a robotic system with the collegial decision making displayed by cockroaches in selecting a resting shelter. We show that artificial evolution can synthesise a simple self-organising behaviour for a swarm of robots, which presents dynamics that are comparable with the cockroaches behaviour.
2012
Istituto di Scienze e Tecnologie della Cognizione - ISTC
978-3-642-33092-6
Evolutionary robotics
swarm intelligence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/131104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact