A new class of IR coherent sources and IR frequency combs, that combine optical frequency-comb synthesizers (OFCSs) and optical parametric up/down-conversions, is already available and still progressing at a very fast pace. Peculiar features for IR radiation produced by difference-frequency-generation (DFG) set-ups or quantum-cascade lasers (QCLs) can he achieved when they are phase and frequency controlled by the OFCS. Indeed, their frequency is accurately known against the primary frequency standard and their linewidth is highly narrowed thanks to the transferred OFCS coherence even for laser sources whose frequencies are several THz apart. These features, together with their wide tunability and their small intensity fluctuations (down to the shot-noise limit), make these IR sources well suited for a wide range of applications, in particular for spectroscopic ones. Very high sensitivity for trace-gas detection has been achieved when combined with enhancement absorption techniques as high-finesse Fabry-Perot cavities or multipass cells. Moreover, the large number of fundamental ro-vibrational transitions of many stable and transient molecular species accessible with this spectrometers, make them particularly attractive for environmental applications, especially considering their compactness and ruggedness when a fiber-based set-up is chosen. Their unique capabilities in terms of achievable precision for absolute frequency measurements can he used to create a "natural" grid of secondary frequency standards of IR molecular absorptions, frequency measured with these high-resolution spectrometers. More important, we have directly generated an IR frequency comb around 3 ?m by DFG Conversion of an OFCS. The generated comb can be employed both as a frequency ruler and a direct source for molecular spectroscopy.

Frequency-comb-assisted mid-infrared spectroscopy

P De Natale;D Mazzotti;G Giusfredi;S Bartalini;P Cancio;P Maddaloni;P Malara;G Gagliardi;I Galli;S Borri
2008

Abstract

A new class of IR coherent sources and IR frequency combs, that combine optical frequency-comb synthesizers (OFCSs) and optical parametric up/down-conversions, is already available and still progressing at a very fast pace. Peculiar features for IR radiation produced by difference-frequency-generation (DFG) set-ups or quantum-cascade lasers (QCLs) can he achieved when they are phase and frequency controlled by the OFCS. Indeed, their frequency is accurately known against the primary frequency standard and their linewidth is highly narrowed thanks to the transferred OFCS coherence even for laser sources whose frequencies are several THz apart. These features, together with their wide tunability and their small intensity fluctuations (down to the shot-noise limit), make these IR sources well suited for a wide range of applications, in particular for spectroscopic ones. Very high sensitivity for trace-gas detection has been achieved when combined with enhancement absorption techniques as high-finesse Fabry-Perot cavities or multipass cells. Moreover, the large number of fundamental ro-vibrational transitions of many stable and transient molecular species accessible with this spectrometers, make them particularly attractive for environmental applications, especially considering their compactness and ruggedness when a fiber-based set-up is chosen. Their unique capabilities in terms of achievable precision for absolute frequency measurements can he used to create a "natural" grid of secondary frequency standards of IR molecular absorptions, frequency measured with these high-resolution spectrometers. More important, we have directly generated an IR frequency comb around 3 ?m by DFG Conversion of an OFCS. The generated comb can be employed both as a frequency ruler and a direct source for molecular spectroscopy.
2008
Istituto Nazionale di Ottica - INO
978-981-281-319-0
Mid IR
optical frequency comb
difference-frequency generation
quantum-cascade laser
molecular spectroscopy
File in questo prodotto:
File Dimensione Formato  
prod_181901-doc_23153.pdf

non disponibili

Descrizione: Frequency-comb-assisted mid-infrared spectroscopy
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/1313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact