The aim of this work was to investigate the potential conversion of Chlamydomonas reinhardtii biomass harvested after hydrogen production. The spent algal biomass was converted into nitrogen-rich bio-char, biodiesel and pyrolysis oil (bio-oil). The yield of lipids (algal oil), obtained by solvent extraction, was 15 ± 2% w/wdry-biomass. This oil was converted into biodiesel with a 8.7 ± 1% w/wdry-biomass yield. The extraction residue was pyrolysed in a fixed bed reactor at 350 °C obtaining bio-char as the principal fraction (44 ± 1% w/wdry-biomass) and 28 ± 2% w/wdry-biomass of bio-oil. Pyrolysis fractions were characterized by elemental analysis, while the chemical composition of bio-oil was fully characterized by GC-MS, using various derivatization techniques. Energy outputs resulting from this approach were distributed in hydrogen (40%), biodiesel (12%) and pyrolysis fractions (48%), whereas bio-char was the largest fraction in terms of mass.
Preliminary investigation on the production of fuels and bio-char from Chlamydomonas reinhardtii biomass redidue after bio-hydrogen production
Alessio Adamiano;Cecilia Faraloni;Giuseppe Torzillo
2011
Abstract
The aim of this work was to investigate the potential conversion of Chlamydomonas reinhardtii biomass harvested after hydrogen production. The spent algal biomass was converted into nitrogen-rich bio-char, biodiesel and pyrolysis oil (bio-oil). The yield of lipids (algal oil), obtained by solvent extraction, was 15 ± 2% w/wdry-biomass. This oil was converted into biodiesel with a 8.7 ± 1% w/wdry-biomass yield. The extraction residue was pyrolysed in a fixed bed reactor at 350 °C obtaining bio-char as the principal fraction (44 ± 1% w/wdry-biomass) and 28 ± 2% w/wdry-biomass of bio-oil. Pyrolysis fractions were characterized by elemental analysis, while the chemical composition of bio-oil was fully characterized by GC-MS, using various derivatization techniques. Energy outputs resulting from this approach were distributed in hydrogen (40%), biodiesel (12%) and pyrolysis fractions (48%), whereas bio-char was the largest fraction in terms of mass.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.