The incorporation of Er3 into BaTiO3 ceramics was investigated on samples containing 0.25, 0.5, 1, 2, 8, and 10 at.% of dopant, after sintering at 1350-1550°C in air. For Er3 concentrations <1 at.%, dense and large-grained ceramics with low room-temperature resistivity (102-103 cm) were obtained. The observed properties are largely independent of stoichiometry. Simultaneous substitution of Er3 at both cation sites, with higher preference for the Ba site, is proposed. The behavior of heavily doped ceramics depends on stoichiometry. When Ba/Ti < 1, the electrical properties change from slightly semiconducting to insulating as Er concentration increases from 2 to 8 at.%. The ceramics have tetragonal perovskite structure and contain a large amount of Er2Ti2O7 pyrochlore phase. On the other hand, when Ba/Ti > 1, the ceramics are insulating, fine-grained, and single phase. In this case, incorporation of Er3 predominantly occurs at the Ti site, with oxygen vacancy compensation. Incorporation is accompanied by a significant reduction of tetragonality and by expansion of the unit cell. The different results indicate that Er3+ solubility at the Ba site does not exceed 1 at.%, whereas solubility at the Ti site is at least 10 at.%. However, the incorporation of Er3+ and the resulting properties are also strongly affected by sintering conditions.

Incorporation of Er3+ into BaTiO3

Buscaglia MT;Viviani M;Buscaglia V;Bottino C;
2002

Abstract

The incorporation of Er3 into BaTiO3 ceramics was investigated on samples containing 0.25, 0.5, 1, 2, 8, and 10 at.% of dopant, after sintering at 1350-1550°C in air. For Er3 concentrations <1 at.%, dense and large-grained ceramics with low room-temperature resistivity (102-103 cm) were obtained. The observed properties are largely independent of stoichiometry. Simultaneous substitution of Er3 at both cation sites, with higher preference for the Ba site, is proposed. The behavior of heavily doped ceramics depends on stoichiometry. When Ba/Ti < 1, the electrical properties change from slightly semiconducting to insulating as Er concentration increases from 2 to 8 at.%. The ceramics have tetragonal perovskite structure and contain a large amount of Er2Ti2O7 pyrochlore phase. On the other hand, when Ba/Ti > 1, the ceramics are insulating, fine-grained, and single phase. In this case, incorporation of Er3 predominantly occurs at the Ti site, with oxygen vacancy compensation. Incorporation is accompanied by a significant reduction of tetragonality and by expansion of the unit cell. The different results indicate that Er3+ solubility at the Ba site does not exceed 1 at.%, whereas solubility at the Ti site is at least 10 at.%. However, the incorporation of Er3+ and the resulting properties are also strongly affected by sintering conditions.
2002
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/133643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 93
  • ???jsp.display-item.citation.isi??? ND
social impact