Microorganisms face constant stressful conditions, such as weak acid stress, both in natural habitats and during their use for biotechnological applications. Microbes respond to stress by activating either cell adaptation or death pathways. Yeast Saccharomyces cerevisiae has been a valuable model to study the mechanisms of cell response to stressful environmental changes. This chapter summarizes current knowledge on molecular mechanisms of general weak acid stress response and programmed cell death in response to acetic acid as unraveled in S. cerevisiae. Future perspectives aimed at clarifying the complex intracellular signaling networks, integrating cell adaptation and death pathways in response to acetic acid stress are envisaged. Elucidation of finely regulated integration mechanisms of such pathways represents a challenge for understanding aspects of eukaryotic cell homeostasis as well as for improving the performance of a given yeast strain in industrial processes and applications.

Molecular mechanisms of programmed cell death induced by acetic acid in Saccharomyces cerevisiae

Giannattasio S;Guaragnella N;Marra E
2012

Abstract

Microorganisms face constant stressful conditions, such as weak acid stress, both in natural habitats and during their use for biotechnological applications. Microbes respond to stress by activating either cell adaptation or death pathways. Yeast Saccharomyces cerevisiae has been a valuable model to study the mechanisms of cell response to stressful environmental changes. This chapter summarizes current knowledge on molecular mechanisms of general weak acid stress response and programmed cell death in response to acetic acid as unraveled in S. cerevisiae. Future perspectives aimed at clarifying the complex intracellular signaling networks, integrating cell adaptation and death pathways in response to acetic acid stress are envisaged. Elucidation of finely regulated integration mechanisms of such pathways represents a challenge for understanding aspects of eukaryotic cell homeostasis as well as for improving the performance of a given yeast strain in industrial processes and applications.
2012
Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM)
978-3-642-21466-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/133838
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact