We investigate a minimal model for non-crystalline water, defined on a Husimi lattice. The peculiar random-regular nature of the lattice is meant to account for the formation of a random 4-coordinated hydrogen-bond network. The model turns out to be consistent with most thermodynamic anomalies observed in liquid and supercooled-liquid water. Furthermore, the model exhibits two glassy phases with different densities, which can coexist at a first-order transition. The onset of a complex free-energy landscape, characterized by an exponentially large number of metastable minima, is pointed out by the cavity method, at the level of 1-step replica symmetry breaking.

A discrete model of water with two distinct glassy phases

Pretti, M
2010

Abstract

We investigate a minimal model for non-crystalline water, defined on a Husimi lattice. The peculiar random-regular nature of the lattice is meant to account for the formation of a random 4-coordinated hydrogen-bond network. The model turns out to be consistent with most thermodynamic anomalies observed in liquid and supercooled-liquid water. Furthermore, the model exhibits two glassy phases with different densities, which can coexist at a first-order transition. The onset of a complex free-energy landscape, characterized by an exponentially large number of metastable minima, is pointed out by the cavity method, at the level of 1-step replica symmetry breaking.
2010
Istituto dei Sistemi Complessi - ISC
File in questo prodotto:
File Dimensione Formato  
prod_181525-doc_21834.pdf

solo utenti autorizzati

Descrizione: A discrete model of water with two distinct glassy phases
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 622.99 kB
Formato Adobe PDF
622.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/13454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact