Polymeric membranes are mainly used today for CO2 capture by membrane technology to produce clean fuel from a gas mixture (from coal gasification or steam reforming processes). Furthermore, gas separation using polymeric membranes is commercially available; nevertheless, CO2 capture in large-scale power production by means of polymeric membranes still presents an inadequate performance owing to their lack of high-temperature stability. CO2 capture using membranes is an ongoing innovative solution that can be applied in combination with all types of power plants, since its main benefit is the possibility of using membranes in combination with small-scale modular fuel cells. In contrast, the main drawback of the removal of carbon dioxide using commercially available membranes is the higher energy penalties on power generation efficiency with respect to a conventional chemical absorption process.
Membrane technology for carbon dioxide (CO2) capture in power plants
A Basile;A Gugliuzza;A Iulianelli;
2011
Abstract
Polymeric membranes are mainly used today for CO2 capture by membrane technology to produce clean fuel from a gas mixture (from coal gasification or steam reforming processes). Furthermore, gas separation using polymeric membranes is commercially available; nevertheless, CO2 capture in large-scale power production by means of polymeric membranes still presents an inadequate performance owing to their lack of high-temperature stability. CO2 capture using membranes is an ongoing innovative solution that can be applied in combination with all types of power plants, since its main benefit is the possibility of using membranes in combination with small-scale modular fuel cells. In contrast, the main drawback of the removal of carbon dioxide using commercially available membranes is the higher energy penalties on power generation efficiency with respect to a conventional chemical absorption process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.