We report on the direct measurements of surface lattice strain in ZnTe epitaxial layers on {100}GaAs substrates by ion channeling Rutherford backscattering spectrometry and low-temperature (10 K) reflectance spectroscopy measurements. The measured ZnTe strain is the superposition of the expected thermal (tensile) strain and a thickness-dependent residual compressive strain. Our data indicate that the removal of this residual strain is slower than the rate predicted by the equilibrium theory, following an apparent h-1/2 power-law dependence on the epilayer thickness h, above ~100 nm.

Determination of surface lattice strain in ZnTe epilayers on {100} GaAs by ion-channeling and reflectance spectroscopy

G Leo;M Mazzer
1993

Abstract

We report on the direct measurements of surface lattice strain in ZnTe epitaxial layers on {100}GaAs substrates by ion channeling Rutherford backscattering spectrometry and low-temperature (10 K) reflectance spectroscopy measurements. The measured ZnTe strain is the superposition of the expected thermal (tensile) strain and a thickness-dependent residual compressive strain. Our data indicate that the removal of this residual strain is slower than the rate predicted by the equilibrium theory, following an apparent h-1/2 power-law dependence on the epilayer thickness h, above ~100 nm.
1993
ZnTe epilayers
RBS
ion-channeling
surface lattice strain
MOCVD
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/135288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact