Since the pioneering work of Haruta et al.1 in 1987 it has been demonstrated that gold nanoparticles (AuNPs) on appropriate supports are excellent catalysts to promote oxidation processes.2 Critical features are the size and the oxidation state of the gold atoms of the clusters. It is well accepted that only gold particles with diameter lower than 5 nm are catalytically active. The crucial point is the development of simple strategies for preparing catalysts containing clusters small enough to maximize the number of metal atoms interacting with the support, in order to increase their reactivity and the catalyst stability. No general consensus exists on the oxidation state of the gold atoms at the active site. In fact, small Au clusters, cationic gold atoms at different oxidation states [Au(I), Au(III), Au(?+)], and gold atoms at the supporting interface have been claimed to be responsible for oxidation reactions.3

Monolayer protected gold nanoparticles on ceria for an efficient CO oxidation catalyst

L Sordelli;
2007

Abstract

Since the pioneering work of Haruta et al.1 in 1987 it has been demonstrated that gold nanoparticles (AuNPs) on appropriate supports are excellent catalysts to promote oxidation processes.2 Critical features are the size and the oxidation state of the gold atoms of the clusters. It is well accepted that only gold particles with diameter lower than 5 nm are catalytically active. The crucial point is the development of simple strategies for preparing catalysts containing clusters small enough to maximize the number of metal atoms interacting with the support, in order to increase their reactivity and the catalyst stability. No general consensus exists on the oxidation state of the gold atoms at the active site. In fact, small Au clusters, cationic gold atoms at different oxidation states [Au(I), Au(III), Au(?+)], and gold atoms at the supporting interface have been claimed to be responsible for oxidation reactions.3
2007
Istituto di Scienze e Tecnologie Molecolari - ISTM - Sede Milano
WATER-GAS SHIFT
CARBON-MONOXIDE
AU
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/13597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 51
social impact