Among solid oxides exploited to prepare efficient fuel cells, La 1-xSrxMnO3 manganites have been widely studied and used as cathodes, because of their high conductivity at the working temperatures, good thermal stability and compatibility with other cell components. A fundamental goal in solid oxide fuel cells technology consists in lowering the normal operating temperatures, e.g. increasing the surface/volume ratio of electrodic materials, so as to enhance their catalytic performances. In this work, the preparation of high surface area La1-xSr xMnO3 (x ? 0.3) films on silicon wafers by the nitrate-citrate Pechini process is described. The films were characterized by X-ray diffraction, Atomic Force Microscopy and Secondary Ion Mass Spectrometry. Good quality nanostructured perovskite-type films were obtained. SIMS methodology enabled to show the surface and in-depth coatings composition and residual contaminants. Moreover, it allowed defining the best synthesis conditions for complete in-depth decomposition of precursors and obtaining homogeneously thick coatings.
SIMS characterization of La0.7Sr0.3MnO3 films for solid oxide fuel cell applications
S Barison;M Battagliarin;S Daolio;M Fabrizio;
2005
Abstract
Among solid oxides exploited to prepare efficient fuel cells, La 1-xSrxMnO3 manganites have been widely studied and used as cathodes, because of their high conductivity at the working temperatures, good thermal stability and compatibility with other cell components. A fundamental goal in solid oxide fuel cells technology consists in lowering the normal operating temperatures, e.g. increasing the surface/volume ratio of electrodic materials, so as to enhance their catalytic performances. In this work, the preparation of high surface area La1-xSr xMnO3 (x ? 0.3) films on silicon wafers by the nitrate-citrate Pechini process is described. The films were characterized by X-ray diffraction, Atomic Force Microscopy and Secondary Ion Mass Spectrometry. Good quality nanostructured perovskite-type films were obtained. SIMS methodology enabled to show the surface and in-depth coatings composition and residual contaminants. Moreover, it allowed defining the best synthesis conditions for complete in-depth decomposition of precursors and obtaining homogeneously thick coatings.File | Dimensione | Formato | |
---|---|---|---|
prod_180589-doc_19120.pdf
non disponibili
Descrizione: SIMS characterization of La0.7Sr0.3MnO3 films for solid oxide fuel cell applications
Dimensione
172.71 kB
Formato
Adobe PDF
|
172.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.