A potential role in disulfide bond formation in the intracellular proteins of thermophilic organisms has recently been ascribed to a new family of protein disulfide oxidoreductases (PDOs). We report on the characterization of SsPDO, isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. SsPDO was cloned and expressed in Escherichia coli. We revealed that SsPDO is the substrate of a thioredoxin reductase in S. solfataricus (KM 0.3 lm) and not thioredoxins (TrxA1 and TrxA2). SsPDO? S. solfataricus thioredoxin reductase constitute a new thioredoxin system in aerobic thermophilic archaea. While redox (reductase, oxidative and isomerase) activities of SsPDO point to its central role in the biochemistry of cytoplasmic disulfide bonds, chaperone activities also on an endogenous substrate suggest a potential role in the stabilization of intracellular proteins. Northern and western analysis have been performed in order to analyze the response to the oxidative stress.

Characterization of a multifunctional protein disulfide oxidoreductase from Sulfolobus solfataricus

Pedone Emilia;
2006

Abstract

A potential role in disulfide bond formation in the intracellular proteins of thermophilic organisms has recently been ascribed to a new family of protein disulfide oxidoreductases (PDOs). We report on the characterization of SsPDO, isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. SsPDO was cloned and expressed in Escherichia coli. We revealed that SsPDO is the substrate of a thioredoxin reductase in S. solfataricus (KM 0.3 lm) and not thioredoxins (TrxA1 and TrxA2). SsPDO? S. solfataricus thioredoxin reductase constitute a new thioredoxin system in aerobic thermophilic archaea. While redox (reductase, oxidative and isomerase) activities of SsPDO point to its central role in the biochemistry of cytoplasmic disulfide bonds, chaperone activities also on an endogenous substrate suggest a potential role in the stabilization of intracellular proteins. Northern and western analysis have been performed in order to analyze the response to the oxidative stress.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/13829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 39
social impact