Increasing amounts of residues and waste materials coming from different industrial activities have become a serious problem for the future. However, over the last few years there has been a growing emphasis on the utilization of these materials in several remediation technologies in order to clean up contaminated soil. Among them, two examples of industrial residues are fly ash and red mud. Fly ash is a by-product of thermal power plants partly used in concrete and cement manufacturing. More than half of it is disposed of in landfills because it finds no other application. It is composed of minerals such as quartz, mullite, subordinately hematite and magnetite, carbon, and a prevalent phase of amorphous aluminosilicate. Red mud is a waste material formed during the production of alumina when the bauxite ore is subject to caustic leaching. It is mainly characterized by the presence of hematite, goethite, gibbsite, rutile and sodium as sodium aluminum silicates or hydro-silicates. A wide variety of organic compounds could also be found (e.g. polybasic and polyhydroxy acids, humic and fulvic acids, carbohydrates, acetic and oxalic acids, furans). The mineralogical and chemical characterization of these two waste materials is generally carried out by X-ray powder diffraction, thermal analysis, infrared spectroscopy, scanning electron microscopy and chemical methods. Imaging spectroscopy under controlled conditions in laboratory is also applied. Many research activities on the neutralization of fly ash and red mud materials as well as to solve the problems connected to their disposal are developed in the last few years. Some of these focus on their utilization in different remediation technologies to immobilize toxic elements. They are in fact used in solidification/stabilization technologies for soil remediation treatment and some studies are based on the immobilization of toxic elements in synthetic zeolites crystallized by treated fly ash. The chapter investigates these two industrial residues focusing both on their chemical-mineralogical properties and their characterization as toxic materials. Studies of remediation methods to reduce the environmental risks due to polluting metals by using red mud and fly ash are presented as well as examples of landfill monitoring and airborne hyperspectral remote sensing application to analyze red mud soil contamination near urban areas. Significant research activities are being carried out and the aim of this chapter is to show the latest studies underlining the importance of multi-technique application in laboratory and plant scale studies.

Multi-Technique Application for Waste Material Detection and Soil Remediation Strategies: The Red Mud Dust and Fly Ash Case Studies

Belviso C;Pascucci S;Cavalcante F;Palombo A;Simoniello T;Fiore S
2011

Abstract

Increasing amounts of residues and waste materials coming from different industrial activities have become a serious problem for the future. However, over the last few years there has been a growing emphasis on the utilization of these materials in several remediation technologies in order to clean up contaminated soil. Among them, two examples of industrial residues are fly ash and red mud. Fly ash is a by-product of thermal power plants partly used in concrete and cement manufacturing. More than half of it is disposed of in landfills because it finds no other application. It is composed of minerals such as quartz, mullite, subordinately hematite and magnetite, carbon, and a prevalent phase of amorphous aluminosilicate. Red mud is a waste material formed during the production of alumina when the bauxite ore is subject to caustic leaching. It is mainly characterized by the presence of hematite, goethite, gibbsite, rutile and sodium as sodium aluminum silicates or hydro-silicates. A wide variety of organic compounds could also be found (e.g. polybasic and polyhydroxy acids, humic and fulvic acids, carbohydrates, acetic and oxalic acids, furans). The mineralogical and chemical characterization of these two waste materials is generally carried out by X-ray powder diffraction, thermal analysis, infrared spectroscopy, scanning electron microscopy and chemical methods. Imaging spectroscopy under controlled conditions in laboratory is also applied. Many research activities on the neutralization of fly ash and red mud materials as well as to solve the problems connected to their disposal are developed in the last few years. Some of these focus on their utilization in different remediation technologies to immobilize toxic elements. They are in fact used in solidification/stabilization technologies for soil remediation treatment and some studies are based on the immobilization of toxic elements in synthetic zeolites crystallized by treated fly ash. The chapter investigates these two industrial residues focusing both on their chemical-mineralogical properties and their characterization as toxic materials. Studies of remediation methods to reduce the environmental risks due to polluting metals by using red mud and fly ash are presented as well as examples of landfill monitoring and airborne hyperspectral remote sensing application to analyze red mud soil contamination near urban areas. Significant research activities are being carried out and the aim of this chapter is to show the latest studies underlining the importance of multi-technique application in laboratory and plant scale studies.
2011
Istituto di Metodologie per l'Analisi Ambientale - IMAA
978-953-307-647-8
Multi-Technique
Waste Material
Red Mud Dust
Fly Ash.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/139276
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact