Stable chaos is a generalization of the chaotic behaviour exhibited by cellular automata to continuous-variable systems and it owes its name to an underlying irregular and yet linearly stable dynamics. In this review we discuss analogies and differences with the usual deterministic chaos and introduce several tools for its characterization. Some examples of transitions from ordered behavior to stable chaos are also analyzed to further clarify the underlying dynamical properties. Finally, two models are specifically discussed: the diatomic hard-point gas chain and a network of globally coupled neurons.

Stable Chaos

Antonio Politi;Alessandro Torcini
2010

Abstract

Stable chaos is a generalization of the chaotic behaviour exhibited by cellular automata to continuous-variable systems and it owes its name to an underlying irregular and yet linearly stable dynamics. In this review we discuss analogies and differences with the usual deterministic chaos and introduce several tools for its characterization. Some examples of transitions from ordered behavior to stable chaos are also analyzed to further clarify the underlying dynamical properties. Finally, two models are specifically discussed: the diatomic hard-point gas chain and a network of globally coupled neurons.
2010
Istituto dei Sistemi Complessi - ISC
978-3-642-04628-5
Chaos
Nonlinear dynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/139336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact