In this paper a novel approach based on a machine learning algorithm (Hamming Clustering) is proposed to estimate the minimal cut and path sets, using the samples generated by a Monte Carlo simulation and any Evaluation Function. Two examples show the potential of the proposed approach.

A machine learning algorithm to estimate minimal cut and path sets from a Monte Carlo simulation

M Muselli
2004

Abstract

In this paper a novel approach based on a machine learning algorithm (Hamming Clustering) is proposed to estimate the minimal cut and path sets, using the samples generated by a Monte Carlo simulation and any Evaluation Function. Two examples show the potential of the proposed approach.
2004
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
1-85233-827-X
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/139450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact