Abstract Facile surface modification of polyester films was performed via chemical solutions treatment. Surface hydrolysis was carried out by means of sodium hydroxide solutions, leading to the formation of carboxylate groups. Three commercial polyester films of 100 ?m in thickness were used in this work: AryLite(TM), Mylar(TM), and Teonex(TM), hydrolysis time being the main modification parameter. FTIR-ATR analysis, topography and contact angle (CA) measurements, surface free energy (SFE) and T-Peel adhesion tests were carried out to characterize the modified films. A quantitative estimate of the carboxylates surface coverage as a function of treatment time was obtained through a supramolecular approach, i.e. the ionic self-assembly of a tetracationic porphyrin chromophore onto the film surface. The surface free energy and critical surface tension of the hydrolyzed polyesters was evaluated by means of Zisman, Saito, Berthelot and Owens-Wendt methods. It was shown that NaOH solution treatment increases roughness, polarity and surface free energy of polymers. As a result, T-Peel strengths for modified Mylar(TM) and Teonex(TM) films were respectively 2.2 and 1.8 times higher than that for the unmodified films, whereas AryLite(TM) adhesion test failed.
Surface modification and adhesion improvement of polyester films
2013
Abstract
Abstract Facile surface modification of polyester films was performed via chemical solutions treatment. Surface hydrolysis was carried out by means of sodium hydroxide solutions, leading to the formation of carboxylate groups. Three commercial polyester films of 100 ?m in thickness were used in this work: AryLite(TM), Mylar(TM), and Teonex(TM), hydrolysis time being the main modification parameter. FTIR-ATR analysis, topography and contact angle (CA) measurements, surface free energy (SFE) and T-Peel adhesion tests were carried out to characterize the modified films. A quantitative estimate of the carboxylates surface coverage as a function of treatment time was obtained through a supramolecular approach, i.e. the ionic self-assembly of a tetracationic porphyrin chromophore onto the film surface. The surface free energy and critical surface tension of the hydrolyzed polyesters was evaluated by means of Zisman, Saito, Berthelot and Owens-Wendt methods. It was shown that NaOH solution treatment increases roughness, polarity and surface free energy of polymers. As a result, T-Peel strengths for modified Mylar(TM) and Teonex(TM) films were respectively 2.2 and 1.8 times higher than that for the unmodified films, whereas AryLite(TM) adhesion test failed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.