Two-photon ionization of atomic helium has been measured by combining femtosecond extreme-ultraviolet pulses from the free-electron laser in Hamburg (FLASH at DESY) with intense light pulses from a synchronized neodymium-doped yttrium lithium fluoride laser. Sidebands appear in the photoelectron spectra when the two laser pulses overlap in both space and time. Their intensity exhibits a characteristic dependence on the relative time delay between the ionizing and the dressing pulses and provides an inherent time marker for time-resolved pump-probe experiments. The measurements of the sidebands are in good agreement with theoretical predictions and allow for a direct analysis of two-photon ionization, free from processes related to interference between multiple quantum paths.
Two-color photoionization in xuv free-electron and visible laser fields
P O'Keeffe;
2006
Abstract
Two-photon ionization of atomic helium has been measured by combining femtosecond extreme-ultraviolet pulses from the free-electron laser in Hamburg (FLASH at DESY) with intense light pulses from a synchronized neodymium-doped yttrium lithium fluoride laser. Sidebands appear in the photoelectron spectra when the two laser pulses overlap in both space and time. Their intensity exhibits a characteristic dependence on the relative time delay between the ionizing and the dressing pulses and provides an inherent time marker for time-resolved pump-probe experiments. The measurements of the sidebands are in good agreement with theoretical predictions and allow for a direct analysis of two-photon ionization, free from processes related to interference between multiple quantum paths.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


