Un objectif majeur de la science des proteines est la conception d'enzymes possedant de nouvelles activites catalytiques et concues pour des applications spe´cifiques. De telles enzymes peuvent avoir un grand potentiel dans des technologies de la biocatalyse et des biocapteur telles que la degradation des polluants et de la biomasse, ainsi que la transformation d'aliments et de produits pharmaceutiques. Pour atteindre cet objectif, il est necessaire de realiser une etude du fonctionnement biochimique de base des metalloproteines. Dans cette optique, la conception des metalloproteines fournit une approche puissante, initialement pour contribuer a une meilleure comprehension de la facon dont les metalloproteines fonctionnent dans les processus biologiques, avec le but final de developper de nouveaux biocatalyseurs et capteurs. Les mimetiques des metalloproteines ont ete developpes avec l'introduction de nouveaux sites de liaison des metaux au sein de proteines naturelles et ainsi qua travers la conception de novo de proteines. Nous avons releve le defi de reproduire les sites actifs des metalloproteines en utilisant un processus de miniaturisation. En particulier, nous avons focalise notre attention sur les proteines contenant du fer et developpe des modeles pour les proteines heminiques et les proteines contenant un noyau « difer » ponte par l'oxygene. Dans cet article, nous presentons les resultats que nous avons obtenus dans la conception et l'etude des proprietes structurelles et fonctionnelles des DFs, une famille de proteines artificielles a` site actif binucleaire de fer.
A major objective in protein science is the design of enzymes with novel catalytic activities that are tailored to specific applications. Such enzymes may have great potential in biocatalysis and biosensor technology, such as in degradation of pollutants and biomass, and in drug and food processing. To reach this objective, investigations into the basic biochemical functioning of metalloproteins are still required. In this perspective, metalloprotein design provides a powerful approach first to contribute to a more comprehensive understanding of the way metalloproteins function in biology, with the ultimate goal of developing novel biocatalysts and sensing devices. Metalloprotein mimetics have been developed through the introduction of novel metal-binding sites into naturally occurring proteins as well as through de novo protein design. We have approached the challenge of reproducing metalloprotein active sites by using a miniaturization process. We centered our attention on iron-containing proteins, and we developed models for heme proteins and diironeoxo proteins. In this paper we summarize the results we obtained on the design, structural, and functional properties of DFs, a family of artificial diiron proteins.
Diiron-containing metalloproteins: Developing functional models
Ornella Maglio;
2007
Abstract
A major objective in protein science is the design of enzymes with novel catalytic activities that are tailored to specific applications. Such enzymes may have great potential in biocatalysis and biosensor technology, such as in degradation of pollutants and biomass, and in drug and food processing. To reach this objective, investigations into the basic biochemical functioning of metalloproteins are still required. In this perspective, metalloprotein design provides a powerful approach first to contribute to a more comprehensive understanding of the way metalloproteins function in biology, with the ultimate goal of developing novel biocatalysts and sensing devices. Metalloprotein mimetics have been developed through the introduction of novel metal-binding sites into naturally occurring proteins as well as through de novo protein design. We have approached the challenge of reproducing metalloprotein active sites by using a miniaturization process. We centered our attention on iron-containing proteins, and we developed models for heme proteins and diironeoxo proteins. In this paper we summarize the results we obtained on the design, structural, and functional properties of DFs, a family of artificial diiron proteins.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


