In this work we propose a new filtering approach for linear discrete time non-Gaussian systems that generalizes a previous result concerning quadratic filtering [A. De Santis, A. Germani, and M. Raimondi, IEEE Trans. Automat. Control, 40 (1995) pp. 1274-1278]. A recursive th-order polynomial estimate of finite memory 1 is achieved by defining a suitable extended state which allows one to solve the filtering problem via the classical Kalman linear scheme. The resulting estimate will be the mean square optimal one among those estimators that take into account -polynomials of the last 1 observations. Numerical simulations show the effectiveness of the proposed method.

Polynomial Filtering for Linear Discrete Time Non-Gaussian Systems

F CARRAVETTA;
1996

Abstract

In this work we propose a new filtering approach for linear discrete time non-Gaussian systems that generalizes a previous result concerning quadratic filtering [A. De Santis, A. Germani, and M. Raimondi, IEEE Trans. Automat. Control, 40 (1995) pp. 1274-1278]. A recursive th-order polynomial estimate of finite memory 1 is achieved by defining a suitable extended state which allows one to solve the filtering problem via the classical Kalman linear scheme. The resulting estimate will be the mean square optimal one among those estimators that take into account -polynomials of the last 1 observations. Numerical simulations show the effectiveness of the proposed method.
1996
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
nonlinear filtering
polynomial estimates
recursive estimates
non-Gaussian systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/142410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 122
  • ???jsp.display-item.citation.isi??? 104
social impact