We present a numerical study of anisotropic statistical fluctuations in homogeneous turbulent flows. We give an argument to predict the dimensional scaling exponents, (p+j)/3, for the projections of p-th order structure function in the j-th sector of the rotational group. We show that measured exponents are anomalous, showing a clear deviation from the dimensional prediction. Dimensional scaling is subleading and it is recovered only after a random reshuffling of all velocity phases, in the stationary ensemble. This supports the idea that anomalous scaling is the result of a genuine inertial evolution, independent of large-scale behavior.

Anomalous and dimensional scaling in anisotropic turbulence

Lanotte A;Toschi F
2002

Abstract

We present a numerical study of anisotropic statistical fluctuations in homogeneous turbulent flows. We give an argument to predict the dimensional scaling exponents, (p+j)/3, for the projections of p-th order structure function in the j-th sector of the rotational group. We show that measured exponents are anomalous, showing a clear deviation from the dimensional prediction. Dimensional scaling is subleading and it is recovered only after a random reshuffling of all velocity phases, in the stationary ensemble. This supports the idea that anomalous scaling is the result of a genuine inertial evolution, independent of large-scale behavior.
2002
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/143324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact