All-atom molecular dynamics simulations were performed on partially folded states (with different secondary structure content) of the dimeric enzyme HIV-1 protease in aqueous solution. The calculations were based on previous simulations of the folding process of the protein based on a Go-model. The structures turn out to be stable, and the subunit–subunit contact surface is smaller than that of the native state. Interestingly, the flexibility of the partially folded states is similar to that observed for the monomer in the native state. The intersubunit contacts are formed by conserved residues, suggesting that these residues may play a role for the folding process. Docking a large set of molecules suggests that several ligands not yet associated to HIV-1 protease may bind to these partially unfolded structures.

Partially folded states of HIV-1 protease: Molecular dynamics simulations and ligand binding

Ghio C;Monti S;
2006

Abstract

All-atom molecular dynamics simulations were performed on partially folded states (with different secondary structure content) of the dimeric enzyme HIV-1 protease in aqueous solution. The calculations were based on previous simulations of the folding process of the protein based on a Go-model. The structures turn out to be stable, and the subunit–subunit contact surface is smaller than that of the native state. Interestingly, the flexibility of the partially folded states is similar to that observed for the monomer in the native state. The intersubunit contacts are formed by conserved residues, suggesting that these residues may play a role for the folding process. Docking a large set of molecules suggests that several ligands not yet associated to HIV-1 protease may bind to these partially unfolded structures.
2006
Istituto per i Processi Chimico-Fisici - IPCF
INFM
DRUG-RESISTANCE
RETROVIRAL ENZYMES
ATOMIC CHARGES
HYDROGEN-BOND
FORCE-FIELD
Go potential
All-atom potential
Docking
Subunit–subunit interaction
Hydrogen bond
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/143500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact