We have monitored viscoelasticity variation of a cell population during the cell cycle by a Quartz Crystal Microbalance (QCM). Balb 3T3 fibroblasts were synchronized in the G0/G1 phase and seeded in a QCM chamber placed in a cell incubator. After cell sedimentation, the frequency signal was characterized by an amplitude modulation attributed to the viscoelasticity variation of the cells proliferating in phase. A control experiment with nonsynchronized cells showed a similar signal trend, but without significant modulation. Interestingly, the system resulted also to perform as a device sensitive to the effect of drugs affecting the cell cycle, such as colchicine.

Monitoring cell-cycle-related viscoelasticity by a quartz crystal microbalance

Alessandrini Andrea;Facci Paolo;
2006

Abstract

We have monitored viscoelasticity variation of a cell population during the cell cycle by a Quartz Crystal Microbalance (QCM). Balb 3T3 fibroblasts were synchronized in the G0/G1 phase and seeded in a QCM chamber placed in a cell incubator. After cell sedimentation, the frequency signal was characterized by an amplitude modulation attributed to the viscoelasticity variation of the cells proliferating in phase. A control experiment with nonsynchronized cells showed a similar signal trend, but without significant modulation. Interestingly, the system resulted also to perform as a device sensitive to the effect of drugs affecting the cell cycle, such as colchicine.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/14387
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 26
social impact