There is growing evidence that metal ions can accelerate the aggregation process of several proteins. This process, associated with several neuro-degenerative diseases, has been reported also for non-pathological proteins. In the present work, the effects of copper and zinc ions on the denaturation and aggregation processes of beta-lactoglobulin A (BLG-A) are investigated by differential scanning calorimetry (DSC), fluorescence, electron paramagnetic resonance (EPR) and optical density. The DSC profiles reveal that the thermal behaviour of BLG-A is a complex process, strongly dependent on the protein concentration. For concentrations <= 0.13 mM, the thermogram shows an endothermic peak at 84.3 degrees C, corresponding to denaturation; for concentrations > 0.13 mM an exothermic peak also appears, above 90 degrees C, related to the aggregation of the denaturated BLG-A molecules. The thioflavin T fluorescence indicates that the thermally induced aggregates show fibrillar features. The presence of either equimolar Cu2+ or Zn2+ ions in the protein solution has different effects. In particular, copper binds to the protein in the native state, as evidenced by EPR experiments, and destabilizes BLG-A by decreasing the denaturation temperature by about 10 degrees C, whereas zinc ions probably perturb the partially denaturated state of the protein. The kinetics of BLG-A aggregation shows that both metal ions abolish the lag phase before the aggregation starts. Moreover, the rate of the process is 4.6-fold higher in the presence of copper, whereas the effect of zinc is negligible. The increase of the aggregation rate, induced by copper, may be due to a site-specific binding of the metal ion on the protein.

Thermally induced denaturation and aggregation of BLG-A: effect of the Cu2+ and Zn2+ metal ions

Bruno Rizzuti;Rita Guzzi
2008

Abstract

There is growing evidence that metal ions can accelerate the aggregation process of several proteins. This process, associated with several neuro-degenerative diseases, has been reported also for non-pathological proteins. In the present work, the effects of copper and zinc ions on the denaturation and aggregation processes of beta-lactoglobulin A (BLG-A) are investigated by differential scanning calorimetry (DSC), fluorescence, electron paramagnetic resonance (EPR) and optical density. The DSC profiles reveal that the thermal behaviour of BLG-A is a complex process, strongly dependent on the protein concentration. For concentrations <= 0.13 mM, the thermogram shows an endothermic peak at 84.3 degrees C, corresponding to denaturation; for concentrations > 0.13 mM an exothermic peak also appears, above 90 degrees C, related to the aggregation of the denaturated BLG-A molecules. The thioflavin T fluorescence indicates that the thermally induced aggregates show fibrillar features. The presence of either equimolar Cu2+ or Zn2+ ions in the protein solution has different effects. In particular, copper binds to the protein in the native state, as evidenced by EPR experiments, and destabilizes BLG-A by decreasing the denaturation temperature by about 10 degrees C, whereas zinc ions probably perturb the partially denaturated state of the protein. The kinetics of BLG-A aggregation shows that both metal ions abolish the lag phase before the aggregation starts. Moreover, the rate of the process is 4.6-fold higher in the presence of copper, whereas the effect of zinc is negligible. The increase of the aggregation rate, induced by copper, may be due to a site-specific binding of the metal ion on the protein.
2008
Istituto per i Processi Chimico-Fisici - IPCF
INFM
Bovine beta-lactoglobulin
Heat-induced aggregation
Protein aggregation
FTIR spectroscopy
Serum-albumin
File in questo prodotto:
File Dimensione Formato  
Stirpe et al., Eur Biophys J 2008;37,1351-1360.pdf

solo utenti autorizzati

Descrizione: Stirpe et al., Eur Biophys J 2008;37,1351-1360
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 407.48 kB
Formato Adobe PDF
407.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/144086
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 35
social impact