Light scattering and time-resolved fluorescence spectroscopy results showed that specially designed amphiphilic cyclodextrins are able to bind a specific protein, PA-I lectin. When containing a galactosyl group, the self-assembled cyclodextrins interact with the protein affecting the dynamical properties of the system and the fluorescence lifetimes (as well as the fluorescence anisotropy) of the protein itself. The self-assembled cyclodextrins containing a glucosyl group, on the other hand, do not induce any change in these measured quantities, suggesting no interaction with protein. This binding capability of galactosyl-modified cyclodextrins offers perspectives on exploiting self-assembled supramolecular structures as nano-carriers to deliver drugs to target tissues.
Cyclodextrin nanoaggregates and their assembly with protein: a spectroscopic investigation
N Micali;V Villari;A Mazzaglia;
2006
Abstract
Light scattering and time-resolved fluorescence spectroscopy results showed that specially designed amphiphilic cyclodextrins are able to bind a specific protein, PA-I lectin. When containing a galactosyl group, the self-assembled cyclodextrins interact with the protein affecting the dynamical properties of the system and the fluorescence lifetimes (as well as the fluorescence anisotropy) of the protein itself. The self-assembled cyclodextrins containing a glucosyl group, on the other hand, do not induce any change in these measured quantities, suggesting no interaction with protein. This binding capability of galactosyl-modified cyclodextrins offers perspectives on exploiting self-assembled supramolecular structures as nano-carriers to deliver drugs to target tissues.File | Dimensione | Formato | |
---|---|---|---|
prod_171424-doc_39503.pdf
non disponibili
Descrizione: articolo pubblicato
Dimensione
279.22 kB
Formato
Adobe PDF
|
279.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.