By studying the optical conductivity of Bi2Sr2-xLaxCuO6 and Y0.97Ca0.03Ba2Cu3O6, we show that the metal-to-insulator transition in these hole-doped cuprates is driven by the opening of a small gap at low T in the far infrared. Its width is consistent with the observations of angle-resolved photoemission spectroscopy in other cuprates, along the nodal line of the k space. The gap forms as the Drude term turns into a far-infrared absorption, whose peak frequency can be approximately predicted on the basis of a Mott-like transition. Another band in the midinfrared softens with doping but is less sensitive to the metal-to-insulator transition.

Far-infrared absorption and the metal-to-insulator transition in hole-doped cuprates

Ortolani M;Lupi S;Calvani P;
2009

Abstract

By studying the optical conductivity of Bi2Sr2-xLaxCuO6 and Y0.97Ca0.03Ba2Cu3O6, we show that the metal-to-insulator transition in these hole-doped cuprates is driven by the opening of a small gap at low T in the far infrared. Its width is consistent with the observations of angle-resolved photoemission spectroscopy in other cuprates, along the nodal line of the k space. The gap forms as the Drude term turns into a far-infrared absorption, whose peak frequency can be approximately predicted on the basis of a Mott-like transition. Another band in the midinfrared softens with doping but is less sensitive to the metal-to-insulator transition.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/144292
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact