We show the experimental observation of quantum states of light exhibiting nonclassical features obtained by single photon excitation of a thermal state. Such single-photon-added thermal states are the result of the single action of the creation operator on a mixed state that can be fully described classically. They show different degree of nonclassicality depending on the mean photon number of the original thermal state. The generated state is characterized by means of ultra-fast homodyne detection which allows us to reconstruct its density matrix and Wigner function by quantum tomography. We demonstrate the nonclassical behavior of single-photon added thermal states by an analysis of the negativity of the Wigner function.
Generation of nonclassical states from thermal radiation
Zavatta A;Bellini M
2006
Abstract
We show the experimental observation of quantum states of light exhibiting nonclassical features obtained by single photon excitation of a thermal state. Such single-photon-added thermal states are the result of the single action of the creation operator on a mixed state that can be fully described classically. They show different degree of nonclassicality depending on the mean photon number of the original thermal state. The generated state is characterized by means of ultra-fast homodyne detection which allows us to reconstruct its density matrix and Wigner function by quantum tomography. We demonstrate the nonclassical behavior of single-photon added thermal states by an analysis of the negativity of the Wigner function.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


