Copper(II) complexes of the neurotoxic peptide fragments of human and chicken prion proteins were studied by potentiometric, UV-vis, CD, and EPR spectroscopic and ESI-MS methods. The peptides included the terminally blocked native and scrambled sequences of HuPrP106-126 (HuPrPAc106-126NH2 and ScrHuPrPAc106-126NH2) and also the nona- and tetrapeptide fragments of both the human and chicken prion proteins (HuPrPAc106- 114NH2, ChPrPAc119-127NH2, HuPrPAc109-112NH2, and ChPrPAc122-125NH2). The histidyl imidazole-N donor atoms were found to be the major copper(II) binding sites of all peptides; 3N and 4N complexes containing additional 2 and 3 deprotonated amide-N donors, respectively, are the major species in the physiological pH range. The complex formation processes for nona- and tetrapeptides are very similar, supporting the fact that successive deprotonation and metal ion coordination of amide functions go toward the N-termini in the form of joined six- and five-membered chelates. As a consequence, the peptide sequences investigated here, related to the neurotoxic region of the human PrP106-126 sequence, show a higher metal-binding affinity than the octarepeat fragments. In the case of the HuPrP peptide sequences, a weak pH-dependent binding of the Met109 residue was also detected in the 3N-coordinated complexes.

Copper(II) Interaction with Unstructured Prion Domain Outside the Octarepeat Region: Speciation, Stability, and Binding Details of Copper(II) Complexes with PrP106-126 Peptides.

Giuseppe Di Natale;Giulia Grasso;Diego La Mendola;Giuseppe Pappalardo;Enrico Rizzarelli;Daniele Sanna;
2005

Abstract

Copper(II) complexes of the neurotoxic peptide fragments of human and chicken prion proteins were studied by potentiometric, UV-vis, CD, and EPR spectroscopic and ESI-MS methods. The peptides included the terminally blocked native and scrambled sequences of HuPrP106-126 (HuPrPAc106-126NH2 and ScrHuPrPAc106-126NH2) and also the nona- and tetrapeptide fragments of both the human and chicken prion proteins (HuPrPAc106- 114NH2, ChPrPAc119-127NH2, HuPrPAc109-112NH2, and ChPrPAc122-125NH2). The histidyl imidazole-N donor atoms were found to be the major copper(II) binding sites of all peptides; 3N and 4N complexes containing additional 2 and 3 deprotonated amide-N donors, respectively, are the major species in the physiological pH range. The complex formation processes for nona- and tetrapeptides are very similar, supporting the fact that successive deprotonation and metal ion coordination of amide functions go toward the N-termini in the form of joined six- and five-membered chelates. As a consequence, the peptide sequences investigated here, related to the neurotoxic region of the human PrP106-126 sequence, show a higher metal-binding affinity than the octarepeat fragments. In the case of the HuPrP peptide sequences, a weak pH-dependent binding of the Met109 residue was also detected in the 3N-coordinated complexes.
2005
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/144623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 94
social impact