We demonstrate the nonresonant magnetic interaction at optical frequencies between a photonic crystal microcavity and a metallized near-field microscopy probe. This interaction can be used to map and control the magnetic component of the microcavity modes. The metal coated tip acts as a microscopic conductive ring, which induces a magnetic response opposite to the inducing magnetic field. The resulting shift in resonance frequency can be used to measure the distribution of the magnetic field intensity of the photonic structure and fine-tune its optical response via the magnetic field components.

Magnetic Imaging in Photonic Crystal Microcavities

Riboli F;Gerardino A;Wiersma D;
2010

Abstract

We demonstrate the nonresonant magnetic interaction at optical frequencies between a photonic crystal microcavity and a metallized near-field microscopy probe. This interaction can be used to map and control the magnetic component of the microcavity modes. The metal coated tip acts as a microscopic conductive ring, which induces a magnetic response opposite to the inducing magnetic field. The resulting shift in resonance frequency can be used to measure the distribution of the magnetic field intensity of the photonic structure and fine-tune its optical response via the magnetic field components.
2010
Istituto di fotonica e nanotecnologie - IFN
Istituto Nazionale di Ottica - INO
single quantum-dot
field
frequencies
cavity
light
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/144677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact