Diamond films are very desirable for application to SAW devices because of their high acoustic wave velocity, which allows the extending of the frequency limit of operation at a given interdigital transducer line-width resolution. Use of high-quality AlN as the piezoelectric layer in conjunction with diamond is also desirable because of its high SAW velocity--the highest among all piezoelectric materials--together with its excellent electrical, mechanical, and chemical properties. The problems arising in the growth of AlN films on diamond have prevented, until now, the use of this combination of materials. In this paper we present recent results on the growth of highly oriented, low-stressed AlN films on diamond. SAW propagation on AlN/diamond has been theoretically investigated together with electromechanical coupling for both the Rayleigh and the Sezawa modes. The theoretical calculations show that high SAW velocities are achievable with good coupling efficiencies. Under proper conditions very large piezoelectric couplings are predicted--k2 = 2?2 and 4% for the Rayleigh and the Sezawa wave, respectively--comparable to those observed in strongly piezoelectric single crystals such as LiNbO3, but with SAW velocities approximately two-fold higher. Experiments performed on AlN/diamond/Si SAW test devices have shown good agreement between experimental results and theoretical predictions and demonstrate the feasibility of SAW devices based on this technology.

Growth of AlN Piezoelectric Film on Diamond for High-Frequency Surface Acoustic Wave Devices

M Benetti;F Di Pietrantonio;E Verona
2005

Abstract

Diamond films are very desirable for application to SAW devices because of their high acoustic wave velocity, which allows the extending of the frequency limit of operation at a given interdigital transducer line-width resolution. Use of high-quality AlN as the piezoelectric layer in conjunction with diamond is also desirable because of its high SAW velocity--the highest among all piezoelectric materials--together with its excellent electrical, mechanical, and chemical properties. The problems arising in the growth of AlN films on diamond have prevented, until now, the use of this combination of materials. In this paper we present recent results on the growth of highly oriented, low-stressed AlN films on diamond. SAW propagation on AlN/diamond has been theoretically investigated together with electromechanical coupling for both the Rayleigh and the Sezawa modes. The theoretical calculations show that high SAW velocities are achievable with good coupling efficiencies. Under proper conditions very large piezoelectric couplings are predicted--k2 = 2?2 and 4% for the Rayleigh and the Sezawa wave, respectively--comparable to those observed in strongly piezoelectric single crystals such as LiNbO3, but with SAW velocities approximately two-fold higher. Experiments performed on AlN/diamond/Si SAW test devices have shown good agreement between experimental results and theoretical predictions and demonstrate the feasibility of SAW devices based on this technology.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/14482
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact