Lagoon environments are very important for groundwater modeling in costal areas, they are delicate and in rapid evolution due to global climatic changes. Airborne electromagnetics (AEM)is a very valuable methodology that can provide high density, high quality data to produce 3D hydrogeological models to depths in excess of hundred meters below surface water column. We present the results from the SkyTEM Venice lagoon survey of 2009, integrated with data from very high resolution seismic survey. The AEM data results enhance greatly the understanding of the hydrogeology and surface-groundwater interactions in the lagoon area, where indirect measurements abound but wells are missing. For example, there is clear evidence of fresh water aquifers underneath the central part of the lagoon, at depth of about 40 m. The near surface part of the AEM data compare well with seismic data, showing that main reflectors come from the interface between the superficial Late Pleistocene looser, saline water saturated sediments and the deeper, more compact and fresher Holocene sediments. There is also clear evidence of submarine groundwater discharge in the lagoon, of paleorivers, and a possible indication of gas seepage trough shallow sediments. Seismic and AEM provide complimentary datasets to discriminate between pore water salinity, lithology and gas. Seismic horizons can actually be included during inversion of AEM data, producing more robust output. AEM data from the southern part of the survey that crosses the shore line and continued also onshore allow a clear mapping of the saline water intrusion inland, and highlight the relationship between pore water salinity of the lagoon sediments and spatial distribution of salt marshes. The latter seem to act like salt sinks, increasing sediments electrical conductivity.

Advances in surface-groundwater modelling in lagoon environment with airborne electromagnetics and high resolution seismic: example from the Venice lagoon

Tosi L
2010

Abstract

Lagoon environments are very important for groundwater modeling in costal areas, they are delicate and in rapid evolution due to global climatic changes. Airborne electromagnetics (AEM)is a very valuable methodology that can provide high density, high quality data to produce 3D hydrogeological models to depths in excess of hundred meters below surface water column. We present the results from the SkyTEM Venice lagoon survey of 2009, integrated with data from very high resolution seismic survey. The AEM data results enhance greatly the understanding of the hydrogeology and surface-groundwater interactions in the lagoon area, where indirect measurements abound but wells are missing. For example, there is clear evidence of fresh water aquifers underneath the central part of the lagoon, at depth of about 40 m. The near surface part of the AEM data compare well with seismic data, showing that main reflectors come from the interface between the superficial Late Pleistocene looser, saline water saturated sediments and the deeper, more compact and fresher Holocene sediments. There is also clear evidence of submarine groundwater discharge in the lagoon, of paleorivers, and a possible indication of gas seepage trough shallow sediments. Seismic and AEM provide complimentary datasets to discriminate between pore water salinity, lithology and gas. Seismic horizons can actually be included during inversion of AEM data, producing more robust output. AEM data from the southern part of the survey that crosses the shore line and continued also onshore allow a clear mapping of the saline water intrusion inland, and highlight the relationship between pore water salinity of the lagoon sediments and spatial distribution of salt marshes. The latter seem to act like salt sinks, increasing sediments electrical conductivity.
2010
Istituto di Scienze Marine - ISMAR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/14487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact