In present clinical practice, information about the heart electrical activity is routinely gathered through ECG's, which record electrical potential from just nine sites on the body surface. However, thanks to the latest technological advances, body surface potential maps are becoming available, as well as epicardial maps obtained noninvasively from body surface data through mathematical model-based reconstruction methods. Such maps can capture a number of electrical conduction pathologies that can be missed by ECG's analysis. But, their interpretation requires skills that are possessed by very few experts. The Spatial Aggregation (SA) approach can play a crucial role in the identification of patterns and salient features in the map, and in the long-term goal of delivering an automated map interpretation tool to be used in a clinical context. In this paper, the focus is on epicardial activation isochrone maps. The salient features that characterize the heart electrical activity, and visually correspond to specific geometric patterns, are defined, extracted from the epicardial electrical data, and finally made available in an interpretable form within a SA-based framework.
Electrocardiographic Imaging: Towards Automated Interpretation of Activation Maps
Liliana Ironi;Stefania Tentoni
2005
Abstract
In present clinical practice, information about the heart electrical activity is routinely gathered through ECG's, which record electrical potential from just nine sites on the body surface. However, thanks to the latest technological advances, body surface potential maps are becoming available, as well as epicardial maps obtained noninvasively from body surface data through mathematical model-based reconstruction methods. Such maps can capture a number of electrical conduction pathologies that can be missed by ECG's analysis. But, their interpretation requires skills that are possessed by very few experts. The Spatial Aggregation (SA) approach can play a crucial role in the identification of patterns and salient features in the map, and in the long-term goal of delivering an automated map interpretation tool to be used in a clinical context. In this paper, the focus is on epicardial activation isochrone maps. The salient features that characterize the heart electrical activity, and visually correspond to specific geometric patterns, are defined, extracted from the epicardial electrical data, and finally made available in an interpretable form within a SA-based framework.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.