We have investigated the changes in the mechanical properties of the zona pellucida (ZP), a multilayer glycoprotein coat that surrounds mammalian eggs, that occur after the maturation and fertilization process of the bovine oocyte by using atomic force spectroscopy. The response of the ZP to mechanical stress has been recovered according to a modified Hertz model. ZP of immature oocytes shows a pure elastic behavior. However, for ZPs of matured and fertilized oocyte, a transition from a purely elastic behavior, which occurs when low stress forces are applied, towards a plastic behavior has been observed. The high critical force necessary to induce deformations, which supports the noncovalent long interaction lifetimes of polymers, increases after the cortical reaction. Atomic force microscopy (AFM) images show that oocyte ZP surface appears to be composed mainly of a dense, random meshwork of nonuniformly arranged fibril bundles. More wrinkled surface characterizes matured oocytes compared with immature and fertilized oocytes. From a mechanical point of view, the transition of the matured ZP membrane toward fertilized ZP, through the hardening process, consists of the recovery of the elasticity of the immature ZP while maintaining a plastic transition that, however, occurs with a much higher force compared with that required in matured ZP.

Mechanical properties of zona pningellucida harde

Massimiliano Papi;Roberto Brunelli;Tiziana Parasassi;Mauro Missori;
2010

Abstract

We have investigated the changes in the mechanical properties of the zona pellucida (ZP), a multilayer glycoprotein coat that surrounds mammalian eggs, that occur after the maturation and fertilization process of the bovine oocyte by using atomic force spectroscopy. The response of the ZP to mechanical stress has been recovered according to a modified Hertz model. ZP of immature oocytes shows a pure elastic behavior. However, for ZPs of matured and fertilized oocyte, a transition from a purely elastic behavior, which occurs when low stress forces are applied, towards a plastic behavior has been observed. The high critical force necessary to induce deformations, which supports the noncovalent long interaction lifetimes of polymers, increases after the cortical reaction. Atomic force microscopy (AFM) images show that oocyte ZP surface appears to be composed mainly of a dense, random meshwork of nonuniformly arranged fibril bundles. More wrinkled surface characterizes matured oocytes compared with immature and fertilized oocytes. From a mechanical point of view, the transition of the matured ZP membrane toward fertilized ZP, through the hardening process, consists of the recovery of the elasticity of the immature ZP while maintaining a plastic transition that, however, occurs with a much higher force compared with that required in matured ZP.
2010
NEUROBIOLOGIA E MEDICINA MOLECOLARE
Istituto dei Sistemi Complessi - ISC
Zona pellucida
Atomic force spectroscopy
Cortical reaction
File in questo prodotto:
File Dimensione Formato  
prod_172557-doc_9976.pdf

solo utenti autorizzati

Descrizione: Mechanical properties of zona pningellucida harde
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 566.04 kB
Formato Adobe PDF
566.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/145304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 60
social impact