The constitutive expression of the rice Osmyb4 gene in Arabidopsis plants gives rise to enhanced abiotic and biotic stress tolerance, probably by activating several stress-inducible pathways. However, the effect of Osmyb4 on stress tolerance likely depends on the genetic background of the transformed species. In this study, we explored the potential of Osmyb4 to enhance the cold and freezing tolerance of Osteospermum ecklonis, an ornamental and perennial plant native to South Africa, because of an increasing interest in growing this species in Europe where winter temperatures are low. Transgenic O. ecklonis plants were obtained through transformation with the Osmyb4 rice gene under the control of the CaMV35S promoter. We examined the phenotypic adaptation of transgenic plants to cold and freezing stress. We also analysed the ability of wild-type and transgenic Osteospermum to accumulate several solutes, such as proline, amino acids and sugars. Using nuclear magnetic resonance, we outlined the metabolic profile of this species under normal growth conditions and under stress for the first time. Indeed, we found that overexpression of Osmyb4 improved the cold and freezing tolerance and produced changes in metabolite accumulation, especially of sugars and proline. Based on our data, it could be of agronomic and economic interest to use this gene to produce Osteospermum plants capable of growing in open field, even during the winter season in climatic zone Z9. (C) 2010 Elsevier Masson SAS. All rights reserved.

Metabolic response to cold and freezing of Osteospermum ecklonis overexpressing Osmyb4

Consonni R;Locatelli F;Coraggio I;Mattana M
2010

Abstract

The constitutive expression of the rice Osmyb4 gene in Arabidopsis plants gives rise to enhanced abiotic and biotic stress tolerance, probably by activating several stress-inducible pathways. However, the effect of Osmyb4 on stress tolerance likely depends on the genetic background of the transformed species. In this study, we explored the potential of Osmyb4 to enhance the cold and freezing tolerance of Osteospermum ecklonis, an ornamental and perennial plant native to South Africa, because of an increasing interest in growing this species in Europe where winter temperatures are low. Transgenic O. ecklonis plants were obtained through transformation with the Osmyb4 rice gene under the control of the CaMV35S promoter. We examined the phenotypic adaptation of transgenic plants to cold and freezing stress. We also analysed the ability of wild-type and transgenic Osteospermum to accumulate several solutes, such as proline, amino acids and sugars. Using nuclear magnetic resonance, we outlined the metabolic profile of this species under normal growth conditions and under stress for the first time. Indeed, we found that overexpression of Osmyb4 improved the cold and freezing tolerance and produced changes in metabolite accumulation, especially of sugars and proline. Based on our data, it could be of agronomic and economic interest to use this gene to produce Osteospermum plants capable of growing in open field, even during the winter season in climatic zone Z9. (C) 2010 Elsevier Masson SAS. All rights reserved.
2010
BIOLOGIA E BIOTECNOLOGIA AGRARIA
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
Cold tolerance
freezing tolerance
NMR spectroscopy
Osmyb4
Osteospermum
File in questo prodotto:
File Dimensione Formato  
prod_172585-doc_21718.pdf

solo utenti autorizzati

Descrizione: articolo pubblicato
Dimensione 980.39 kB
Formato Adobe PDF
980.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/145332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? ND
social impact