Here a general approach to measure quantitatively with atomic resolution the distribution of a chemical species in a host matrix is derived and applied to a case study consisting of a layer of Si buried in a GaAs matrix. Simulations and experiments performed on SiGaAs superlattices demonstrate a quasilinear dependence of the high-angle annular dark-field image intensity on the concentration of Si in the GaAs matrix. The results have been compared with those obtained by cross-sectional scanning tunneling microscopy on the same specimens.
Atomic-resolution quantitative composition analysis using scanning transmission electron microscopy Z-contrast experiments
Carlino E;Grillo V
2005
Abstract
Here a general approach to measure quantitatively with atomic resolution the distribution of a chemical species in a host matrix is derived and applied to a case study consisting of a layer of Si buried in a GaAs matrix. Simulations and experiments performed on SiGaAs superlattices demonstrate a quasilinear dependence of the high-angle annular dark-field image intensity on the concentration of Si in the GaAs matrix. The results have been compared with those obtained by cross-sectional scanning tunneling microscopy on the same specimens.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.