A high-density plantation of three genotypes of Populus was exposed to an elevated concentration of carbon dioxide ([CO2]; 550 ?mol mol-1) from planting through canopy closure using a free-air CO2 enrichment (FACE) technique. The FACE treatment stimulated gross primary productivity by 22 and 11% in the second and third years, respectively. Partitioning of extra carbon (C) among C pools of different turnover rates is of critical interest; thus, we calculated net ecosystem productivity (NEP) to determine whether elevated atmospheric [CO2] will enhance net plantation C storage capacity. Free-air CO2 enrichment increased net primary productivity (NPP) of all genotypes by 21% in the second year and by 26% in the third year, mainly because of an increase in the size of C pools with relatively slow turnover rates (i.e., wood). In all genotypes in the FACE treatment, more new soil C was added to the total soil C pool compared with the control treatment. However, more old soil C loss was observed in the FACE treatment compared with the control treatment, possibly due to a priming effect from newly incorporated root litter. FACE did not significantly increase NEP, probably as a result of this priming effect.

Net carbon storage in a poplar plantation (POPFACE) after three years of free-air CO2 enrichment

Miglietta F;
2005

Abstract

A high-density plantation of three genotypes of Populus was exposed to an elevated concentration of carbon dioxide ([CO2]; 550 ?mol mol-1) from planting through canopy closure using a free-air CO2 enrichment (FACE) technique. The FACE treatment stimulated gross primary productivity by 22 and 11% in the second and third years, respectively. Partitioning of extra carbon (C) among C pools of different turnover rates is of critical interest; thus, we calculated net ecosystem productivity (NEP) to determine whether elevated atmospheric [CO2] will enhance net plantation C storage capacity. Free-air CO2 enrichment increased net primary productivity (NPP) of all genotypes by 21% in the second year and by 26% in the third year, mainly because of an increase in the size of C pools with relatively slow turnover rates (i.e., wood). In all genotypes in the FACE treatment, more new soil C was added to the total soil C pool compared with the control treatment. However, more old soil C loss was observed in the FACE treatment compared with the control treatment, possibly due to a priming effect from newly incorporated root litter. FACE did not significantly increase NEP, probably as a result of this priming effect.
2005
Istituto di Biologia Agro-ambientale e Forestale - IBAF - Sede Porano
Istituto di Biometeorologia - IBIMET - Sede Firenze
CO2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/145403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 69
social impact