We perform an extensive quantum Monte Carlo investigation of entanglement properties in quantum spin systems close to or at a quantum critical point. Making use of the Stochastic Series Expansion method, we can systematically estimate the bipartite entanglement of the ground-state wavefunction in a large class of anisotropic spin models on unfrustrated lattices and in a uniform magnetic field. The behavior of the entanglement estimators as a function of the field shows remarkable universal features independent of the lattice dimensionality, marking both the occurrence of a field-induced quantum phase transition and of an exactly factorized state.
Quantum Monte Carlo study of entanglement in quantum spin systems
2005
Abstract
We perform an extensive quantum Monte Carlo investigation of entanglement properties in quantum spin systems close to or at a quantum critical point. Making use of the Stochastic Series Expansion method, we can systematically estimate the bipartite entanglement of the ground-state wavefunction in a large class of anisotropic spin models on unfrustrated lattices and in a uniform magnetic field. The behavior of the entanglement estimators as a function of the field shows remarkable universal features independent of the lattice dimensionality, marking both the occurrence of a field-induced quantum phase transition and of an exactly factorized state.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.