Liposome capillary electrophoresis (LCE) using unilamellar liposomes composed of the zwitterionic phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) as a suspended pseudo stationary phase has been investigated for its capability at separating peptides and proteins in bare fused-silica capillaries. The study has explored different strategies for allowing the liposome suspension to act as a disperse pseudo stationary phase with the ability of modulating selectivity, resolution and separation performance of peptides and proteins in bare-fused silica capillaries. Such strategies comprise the use of capillaries either partially or totally filled with the liposome suspension, whereas the electrolyte solution is liposome-free, or the incorporation of the liposomes into the buffer solution employed for rinsing the capillary and as the background electrolyte. Three synthetic peptides of similar amino acid sequence and four basic standard proteins have been employed as test analytes. Varying the volume of the liposome suspension introduced in the capillary promoted differentiated variations in the migration velocity of the three peptides reflecting their selective interactions with the liposomes. Efficient separation of basic proteins was obtained at pH 7.4 in a bare fused-silica capillary with the electrolyte solution containing 60 mM POPC.
Liposome Capillary Electrophoresis of Peptides and Proteins
Corradini Danilo;Mancini Giovanna
2004
Abstract
Liposome capillary electrophoresis (LCE) using unilamellar liposomes composed of the zwitterionic phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) as a suspended pseudo stationary phase has been investigated for its capability at separating peptides and proteins in bare fused-silica capillaries. The study has explored different strategies for allowing the liposome suspension to act as a disperse pseudo stationary phase with the ability of modulating selectivity, resolution and separation performance of peptides and proteins in bare-fused silica capillaries. Such strategies comprise the use of capillaries either partially or totally filled with the liposome suspension, whereas the electrolyte solution is liposome-free, or the incorporation of the liposomes into the buffer solution employed for rinsing the capillary and as the background electrolyte. Three synthetic peptides of similar amino acid sequence and four basic standard proteins have been employed as test analytes. Varying the volume of the liposome suspension introduced in the capillary promoted differentiated variations in the migration velocity of the three peptides reflecting their selective interactions with the liposomes. Efficient separation of basic proteins was obtained at pH 7.4 in a bare fused-silica capillary with the electrolyte solution containing 60 mM POPC.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.