A thermophilic, spore-forming bacterial strain L1T was isolated from hot compost Pomigliano Environment s.p.a., Pomigliano, Naples, Italy. The strain was identified by using a polyphasic taxonomic approach. L1T resulted in an aerobic, gram-positive, rod-shaped, thermophilic with an optimum growth temperature of 68°C chemorganotrophic bacterium which grew on hydrocarbons as unique carbon and energy sources and was resistant to heavy metals. The G+C DNA content was 43.5 mol%. Phylogenetic analysis of 16S rRNA gene sequence and Random Amplified Polymorphic DNA-PCR (RAPD-PCR) analysis of L1T and related strains showed that it forms within Geobacillus toebii, a separate cluster in the Geobacillus genus. The composition of cellular fatty acids analyses by Gas-Mass Spectroscopy differed from that typical for the genus Geobacillus in that it is lacking in iso-C15 fatty acid, while iso-C16 and iso-C17 were predominant. Isolates grew on a rich complex medium at temperatures between 55-75°C and presented a doubling time (td) of 2 h and 6 h using complex media and hydrocarbon media, respectively. Among hydrocarbons tested, n-decane (2%) was the more effective to support the growth (1 g/L of wet cells). The microorganism showed resistance to heavy metal tested during the growth. Furthermore, intracellular á-galactosidase and á-glucosidase enzymatic activities were detectable in the L1T strain. Based on phenotypic, phylogenetic, fatty acid analysis and results from DNA-DNA hybridization, we propose assigning a novel subspecies of Geobacillus toebii, to be named Geobacillus toebii subsp. decanicus subsp. nov., with the type strain L1T (=DSM 17041=ATCC BAA 1004).
Geobacillus toebii subsp. decanicus subsp. nov., a hydrocarbon-degrading, heavy metal resistant bacterium from hot compost
Poli A;Romano I;Orlando P;Lama L;Gambacorta A;Nicolaus B
2006
Abstract
A thermophilic, spore-forming bacterial strain L1T was isolated from hot compost Pomigliano Environment s.p.a., Pomigliano, Naples, Italy. The strain was identified by using a polyphasic taxonomic approach. L1T resulted in an aerobic, gram-positive, rod-shaped, thermophilic with an optimum growth temperature of 68°C chemorganotrophic bacterium which grew on hydrocarbons as unique carbon and energy sources and was resistant to heavy metals. The G+C DNA content was 43.5 mol%. Phylogenetic analysis of 16S rRNA gene sequence and Random Amplified Polymorphic DNA-PCR (RAPD-PCR) analysis of L1T and related strains showed that it forms within Geobacillus toebii, a separate cluster in the Geobacillus genus. The composition of cellular fatty acids analyses by Gas-Mass Spectroscopy differed from that typical for the genus Geobacillus in that it is lacking in iso-C15 fatty acid, while iso-C16 and iso-C17 were predominant. Isolates grew on a rich complex medium at temperatures between 55-75°C and presented a doubling time (td) of 2 h and 6 h using complex media and hydrocarbon media, respectively. Among hydrocarbons tested, n-decane (2%) was the more effective to support the growth (1 g/L of wet cells). The microorganism showed resistance to heavy metal tested during the growth. Furthermore, intracellular á-galactosidase and á-glucosidase enzymatic activities were detectable in the L1T strain. Based on phenotypic, phylogenetic, fatty acid analysis and results from DNA-DNA hybridization, we propose assigning a novel subspecies of Geobacillus toebii, to be named Geobacillus toebii subsp. decanicus subsp. nov., with the type strain L1T (=DSM 17041=ATCC BAA 1004).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


