The Root effect is a widespread property among fish hemoglobins whose structural basis remains largely obscure. Here we report a crystallographic and spectroscopic characterization of the non-Root-effect hemoglobin isolated from the Antarctic fish Trematomus newnesi in the deoxygenated form. The crystal structure unveils that the T state of this hemoglobin is stabilized by a strong H-bond between the side chains of Asp95± and Asp101² at the ±(1)²(2) and ±(2)²(1) interfaces. This unexpected finding undermines the accepted paradigm that correlates the presence of this unusual H-bond with the occurrence of the Root effect. Surprisingly, the T state is characterized by an atypical flexibility of two ± chains within the tetramer. Indeed, regions such as the CD± corner and the EF± pocket, which are normally well ordered in the T state of tetrameric hemoglobins, display high B-factors and non-continuous electron densities. This flexibility also leads to unusual distances between the heme iron and the proximal and distal His residues. These observations are in line with Raman micro-spectroscopy studies carried out both in solution and in the crystal state. The findings here presented suggest that in fish hemoglobins the Root effect may be switched off through a significant destabilization of the T state regardless of the presence of the inter-aspartic H-bond. Similar mechanisms may also operate for other non-Root effect hemoglobins. The implications of the flexibility of the CD± corner for the mechanism of the T-R transition in tetrameric hemoglobins are also discussed.

An order-disorder transition plays a role in switching off the Root effect in fish hemoglobins

Vergara A;Vitagliano L;Verde C;di Prisco G;
2010

Abstract

The Root effect is a widespread property among fish hemoglobins whose structural basis remains largely obscure. Here we report a crystallographic and spectroscopic characterization of the non-Root-effect hemoglobin isolated from the Antarctic fish Trematomus newnesi in the deoxygenated form. The crystal structure unveils that the T state of this hemoglobin is stabilized by a strong H-bond between the side chains of Asp95± and Asp101² at the ±(1)²(2) and ±(2)²(1) interfaces. This unexpected finding undermines the accepted paradigm that correlates the presence of this unusual H-bond with the occurrence of the Root effect. Surprisingly, the T state is characterized by an atypical flexibility of two ± chains within the tetramer. Indeed, regions such as the CD± corner and the EF± pocket, which are normally well ordered in the T state of tetrameric hemoglobins, display high B-factors and non-continuous electron densities. This flexibility also leads to unusual distances between the heme iron and the proximal and distal His residues. These observations are in line with Raman micro-spectroscopy studies carried out both in solution and in the crystal state. The findings here presented suggest that in fish hemoglobins the Root effect may be switched off through a significant destabilization of the T state regardless of the presence of the inter-aspartic H-bond. Similar mechanisms may also operate for other non-Root effect hemoglobins. The implications of the flexibility of the CD± corner for the mechanism of the T-R transition in tetrameric hemoglobins are also discussed.
2010
Istituto di Biochimica delle Proteine - IBP - Sede Napoli
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/146839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact