Two series of pumice-supported palladium and palladium-copper catalysts, prepared by impregnation with different palladium and copper precursors, were tested for the hydrogenation of aqueous nitrate and nitrite solutions. Measurements were performed in a stirred tank reactor, operating in batch conditions, in buffered water solution at atmospheric pressure and at 293 K. The activities of the catalysts were calculated in terms of nitrate and/or nitrite removal. With the monometallic Pd/pumice, the reduction of nitrite is highly selective; only 0.2% of the initial nitrite content is converted to ammonium ions. The activity in terms of turn over frequency (TOF) is higher as compared to a catalyst of Pd on silica. Addition of copper to the palladium catalyst is essential for the reduction of nitrates, although it decreases the nitrite reduction activity and increases the production of ammonium ions. Nitrate reduction appears to be structure-insensitive and a volcano-type dependence of the activity versus the overall Cu atomic weight percentage is observed for the two series of catalysts.

Catalytic reduction of nitrates and nitrites in water solution on pumice-supported Pd-Cu catalysts

F Deganello;LF Liotta;
2000

Abstract

Two series of pumice-supported palladium and palladium-copper catalysts, prepared by impregnation with different palladium and copper precursors, were tested for the hydrogenation of aqueous nitrate and nitrite solutions. Measurements were performed in a stirred tank reactor, operating in batch conditions, in buffered water solution at atmospheric pressure and at 293 K. The activities of the catalysts were calculated in terms of nitrate and/or nitrite removal. With the monometallic Pd/pumice, the reduction of nitrite is highly selective; only 0.2% of the initial nitrite content is converted to ammonium ions. The activity in terms of turn over frequency (TOF) is higher as compared to a catalyst of Pd on silica. Addition of copper to the palladium catalyst is essential for the reduction of nitrates, although it decreases the nitrite reduction activity and increases the production of ammonium ions. Nitrate reduction appears to be structure-insensitive and a volcano-type dependence of the activity versus the overall Cu atomic weight percentage is observed for the two series of catalysts.
2000
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
Catalytic reduction
Nitrite
Nitrate
Turn over frequency
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/14732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 182
  • ???jsp.display-item.citation.isi??? ND
social impact