Concerted experiments and theoretical analysis are applied to conclusively demonstrate the vacancy generation during fast melting and regrowth of Si by laser irradiation. Experiments, based on the positron annihilation spectroscopy and designed to test the theoretical predictions, evidence a vacancy supersaturation after the laser process depending on the irradiation conditions. Stochastic atomistic simulations of the molten Si recrystallization show trapping of vacancies in the recrystallized region. Finally, continuum phase-field simulations of the full process, calibrated using the Monte Carlo results, show a defect evolution in close agreement with the experiments.

Vacancy generation in liquid phase epitaxy of Si

La Magna A;Privitera V;Fortunato G;
2007

Abstract

Concerted experiments and theoretical analysis are applied to conclusively demonstrate the vacancy generation during fast melting and regrowth of Si by laser irradiation. Experiments, based on the positron annihilation spectroscopy and designed to test the theoretical predictions, evidence a vacancy supersaturation after the laser process depending on the irradiation conditions. Stochastic atomistic simulations of the molten Si recrystallization show trapping of vacancies in the recrystallized region. Finally, continuum phase-field simulations of the full process, calibrated using the Monte Carlo results, show a defect evolution in close agreement with the experiments.
2007
Istituto di fotonica e nanotecnologie - IFN
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/147392
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact