Lyapunov exponents of heavy particles and tracers advected by homogeneous and isotropic turbulent flows are investigated by means of direct numerical simulations. For large values of the Stokes number, the main effect of inertia is to reduce the chaoticity with respect to fluid tracers. Conversely, for small inertia, a counterintuitive increase of the first Lyapunov exponent is observed. The flow intermittency is found to induce a Reynolds number dependency for the statistics of the finite-time Lyapunov exponents of tracers. Such intermittency effects are found to persist at increasing inertia. (c) 2006 American Institute of Physics.

Lyapunov exponents of heavy particles in turbulence

Guido Boffetta;Massimo Cencini;Federico Toschi
2006

Abstract

Lyapunov exponents of heavy particles and tracers advected by homogeneous and isotropic turbulent flows are investigated by means of direct numerical simulations. For large values of the Stokes number, the main effect of inertia is to reduce the chaoticity with respect to fluid tracers. Conversely, for small inertia, a counterintuitive increase of the first Lyapunov exponent is observed. The flow intermittency is found to induce a Reynolds number dependency for the statistics of the finite-time Lyapunov exponents of tracers. Such intermittency effects are found to persist at increasing inertia. (c) 2006 American Institute of Physics.
2006
Istituto Applicazioni del Calcolo ''Mauro Picone''
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Istituto dei Sistemi Complessi - ISC
INFM
PREFERENTIAL CONCENTRATION
INTERMITTENT DISTRIBUTION
INERTIAL PARTICLES
FLOW
ACCELERATION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/148082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact