The intensities of hydrogen Lyman-alpha and Balmer series emission lines as a result of photoexcitation of free CH4 and NH3 molecules at the C 1s and N 1s edges have been measured. For methane, the total fluorescence yield in the visible region ( 300 - 650 nm) was also recorded. Excitation functions of the Balmer lines show relative intensity enhancement of Balmer-beta emission in comparison with Balmer-alpha at higher core- to- Rydberg excitations. The Lyman-alpha emission intensity, in general, follows the relations observed in the corresponding total ion yield measurements. Additionally, the Balmer-gamma and -delta yields were measured for ammonia molecules and they show intensity maxima at photon energies shifted closer to the N 1s threshold than Balmer-alpha and -beta. A quantum defect analysis is performed to find out which core excitations are responsible for this enhanced intensity. Dissociation pathways leading to the emission in H atoms are discussed.

Lyman and Balmer emission following core excitations in methane and ammonia molecules

A Kivimaki;M Coreno;
2007

Abstract

The intensities of hydrogen Lyman-alpha and Balmer series emission lines as a result of photoexcitation of free CH4 and NH3 molecules at the C 1s and N 1s edges have been measured. For methane, the total fluorescence yield in the visible region ( 300 - 650 nm) was also recorded. Excitation functions of the Balmer lines show relative intensity enhancement of Balmer-beta emission in comparison with Balmer-alpha at higher core- to- Rydberg excitations. The Lyman-alpha emission intensity, in general, follows the relations observed in the corresponding total ion yield measurements. Additionally, the Balmer-gamma and -delta yields were measured for ammonia molecules and they show intensity maxima at photon energies shifted closer to the N 1s threshold than Balmer-alpha and -beta. A quantum defect analysis is performed to find out which core excitations are responsible for this enhanced intensity. Dissociation pathways leading to the emission in H atoms are discussed.
2007
Istituto di Nanotecnologia - NANOTEC
INFM
K-SHELL EXCITATION
PHOTOIONIZATION CROSS-SECTIONS
X-RAY EXCITATION
AUGER DECAY
FLUORESCENCE SPECTROSCOPY
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/148118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact