We present excitation energy spectra of few-electron vertically coupled quantum dots for strong and intermediate interdot coupling. By applying a magnetic field, we induce ground state transitions and identify the corresponding quantum numbers by comparison with few-body calculations. In addition to atomiclike states, we find novel "molecularlike" phases. The isospin index characterizes the nature of the bond of the artificial molecule and this we control. Like spin in a single quantum dot, transitions in isospin leading to full polarization are observed with increasing magnetic field.

Molecular phases in coupled quantum dots

Rontani M;Manghi F;
2004-01-01

Abstract

We present excitation energy spectra of few-electron vertically coupled quantum dots for strong and intermediate interdot coupling. By applying a magnetic field, we induce ground state transitions and identify the corresponding quantum numbers by comparison with few-body calculations. In addition to atomiclike states, we find novel "molecularlike" phases. The isospin index characterizes the nature of the bond of the artificial molecule and this we control. Like spin in a single quantum dot, transitions in isospin leading to full polarization are observed with increasing magnetic field.
2004
INFM
Istituto Nanoscienze - NANO
ARTIFICIAL MOLECULES; STATES; ATOMS; SPECTROSCOPY; TRANSITIONS; SPECTRA; SPIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/14854
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact