Having confirmed that adenovirus-mediated overexpression of NH(2)-tau fragment lacking the first 25 aminoacids evokes a potent neurotoxic effect, sustained by protracted stimulation of NMDA receptors, in primary neuronal cultures we investigated whether and how chemically synthesized NH(2)-derived tau peptides, i.e. NH(2)-26-44 and NH(2)-1-25 fragments, affect mitochondrial function. We tested both fragments on each step of the processes leading to ATP synthesis via oxidative phosphorylation: i) electron flow via the respiratory chain from physiological substrates to oxygen with the activity of each individual complex of the respiratory chain investigated in some detail, ii) membrane potential generation arising from externally added succinate and iii) the activity of both the adenine nucleotide translocator and iv) ATP synthase. Oxidative phosphorylation is not affected by NH(2)-1-25 tau fragment, but dramatically impaired by NH(2)-26-44 tau fragment. Both cytochrome c oxidase and the adenine nucleotide translocator are targets of NH(2)-26-44 tau fragment, but adenine nucleotide translocator is the unique mitochondrial target responsible for impairment of oxidative phosphorylation by the NH(2)-26-44 tau fragment, which then exerts deleterious effects on cellular availability of ATP synthesized into mitochondria.

A peptide containing residues 26-44 of tau protein impairs mithocondrial oxidative phosphorylation acting ...

Corsetti V bc;Pappalardo G d;
2008

Abstract

Having confirmed that adenovirus-mediated overexpression of NH(2)-tau fragment lacking the first 25 aminoacids evokes a potent neurotoxic effect, sustained by protracted stimulation of NMDA receptors, in primary neuronal cultures we investigated whether and how chemically synthesized NH(2)-derived tau peptides, i.e. NH(2)-26-44 and NH(2)-1-25 fragments, affect mitochondrial function. We tested both fragments on each step of the processes leading to ATP synthesis via oxidative phosphorylation: i) electron flow via the respiratory chain from physiological substrates to oxygen with the activity of each individual complex of the respiratory chain investigated in some detail, ii) membrane potential generation arising from externally added succinate and iii) the activity of both the adenine nucleotide translocator and iv) ATP synthase. Oxidative phosphorylation is not affected by NH(2)-1-25 tau fragment, but dramatically impaired by NH(2)-26-44 tau fragment. Both cytochrome c oxidase and the adenine nucleotide translocator are targets of NH(2)-26-44 tau fragment, but adenine nucleotide translocator is the unique mitochondrial target responsible for impairment of oxidative phosphorylation by the NH(2)-26-44 tau fragment, which then exerts deleterious effects on cellular availability of ATP synthesized into mitochondria.
2008
Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM)
Mitochondria; Tau fragment; Cerebellar granule cells; Oxidative phosphorylation; ATP synthesis; Neurotoxicity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/148998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 77
social impact