Cladosporols, purified and characterized as secondary metabolites from Cladosporium tenuissimum, display an antifungal activity. In this study, we tested the antiproliferative properties of cladosporol A, the main isoform of this metabolite family, against human cancer cell lines. By assessing cell viability, we found that cladosporol A inhibits the growth of various human colon cancers derived cell lines (HT-29, SW480, and CaCo-2) in a time- and concentration-dependent manner, specifically of HT-29cells. The reduced cell proliferation was due to a G1-phase arrest, as assessed by fluorescence activated cell sorting analysis on synchronized HT-29cells, and was associated with an early and robust over-expression of p21(waf1/cip1) , the well-known cyclin-dependent kinases inhibitor. This suggests that the drug may play a role in the control of cancer cell proliferation. Consistently, cyclin D1, cyclin E, CDK2, and CDK4 proteins were reduced and histone H1-associated CDK2 kinase activity inhibited. In addition to p21(waf1/cip1) , exposure to 20µM cladosporol A caused a simultaneous increase of pERK and pJNK, suggesting that this drug activates a circuit that integrates cell cycle regulation and the signaling pathways both involved in the inhibition of cell proliferation. Finally, we showed that the increase of p21(waf1/cip1) expression was generated by a Sp1-dependent p53-independent stimulation of its gene transcription as mutagenesis of the Sp1 binding sites located in the p21 proximal promoter abolished induction. To our knowledge, this is the first report showing that cladosporol A inhibits colon cancer cell proliferation by modulating p21(waf1/cip1) expression. © 2011 Wiley Periodicals, Inc.

Cladosporol a stimulates G1-phase arrest of the cell cycle by up-regulation of p21(waf1/cip1) expression in human colon carcinoma HT-29 cells.

Salzano S;Renzone G;Scaloni A;
2013

Abstract

Cladosporols, purified and characterized as secondary metabolites from Cladosporium tenuissimum, display an antifungal activity. In this study, we tested the antiproliferative properties of cladosporol A, the main isoform of this metabolite family, against human cancer cell lines. By assessing cell viability, we found that cladosporol A inhibits the growth of various human colon cancers derived cell lines (HT-29, SW480, and CaCo-2) in a time- and concentration-dependent manner, specifically of HT-29cells. The reduced cell proliferation was due to a G1-phase arrest, as assessed by fluorescence activated cell sorting analysis on synchronized HT-29cells, and was associated with an early and robust over-expression of p21(waf1/cip1) , the well-known cyclin-dependent kinases inhibitor. This suggests that the drug may play a role in the control of cancer cell proliferation. Consistently, cyclin D1, cyclin E, CDK2, and CDK4 proteins were reduced and histone H1-associated CDK2 kinase activity inhibited. In addition to p21(waf1/cip1) , exposure to 20µM cladosporol A caused a simultaneous increase of pERK and pJNK, suggesting that this drug activates a circuit that integrates cell cycle regulation and the signaling pathways both involved in the inhibition of cell proliferation. Finally, we showed that the increase of p21(waf1/cip1) expression was generated by a Sp1-dependent p53-independent stimulation of its gene transcription as mutagenesis of the Sp1 binding sites located in the p21 proximal promoter abolished induction. To our knowledge, this is the first report showing that cladosporol A inhibits colon cancer cell proliferation by modulating p21(waf1/cip1) expression. © 2011 Wiley Periodicals, Inc.
2013
Istituto di Endocrinologia e Oncologia Sperimentale ''G. Salvatore'' - IEOS
Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo - ISPAAM
File in questo prodotto:
File Dimensione Formato  
prod_171043-doc_44035.pdf

accesso aperto

Descrizione: Cladosporol a stimulates G1-phase arrest of the cell cycle by up-regulation of p21(waf1/cip1) expression in human colon carcinoma HT-29 cells.
Licenza: Altro tipo di licenza
Dimensione 5.12 MB
Formato Adobe PDF
5.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/149017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact