Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differ- entiation and death. As the first stage of a systematic genome- wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS-RAF-MEK-ERK-MAP kinase pathway mediates cellular responses to growth signals1. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS1-3. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma.

Mutations of the BRAF gene in human cancer

Palmieri Giuseppe;
2002

Abstract

Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differ- entiation and death. As the first stage of a systematic genome- wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS-RAF-MEK-ERK-MAP kinase pathway mediates cellular responses to growth signals1. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS1-3. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma.
2002
Istituto di Chimica Biomolecolare - ICB - Sede Pozzuoli
GENETICA DELLE POPOLAZIONI
Dipartimento di Scienze Chimiche e Tecnologie dei Materiali - DSCTM
melanoma
BRAF mutation
MAPK pathway
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/150283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9014
  • ???jsp.display-item.citation.isi??? 8280
social impact