The NE portion of Gela Basin in the Sicily Channel is affected by multiple slope failures originated during the late-Quaternary. Basin sequences show evidence of stacked acoustically transparent and/or chaotic units, characterized by irregular upper surfaces, interpreted as mass-transport deposits. The seafloor morphology also shows evidence of both old, partially buried, as well as recent slide products. Two recent slides exposed at seafloor, only 6 km apart (Twin Slides), are similar in geomorphological parameters, age and multistage evolution. Multistage failure of Twin Slides evolved from mud flows, derived from the extensive failure of less consolidated post-glacial units, to localized slides (second stage of failure) affecting older and more consolidated materials. Although Twin Slides are very close to each other and have similar runout and fall height, they produced very dissimilar organization of the displaced masses, likely reflecting the distinct source units affected by failures. Integrating geophysical, sedimentological, structural and palaeontological data, a detailed investigation was conducted to determine the size and internal geometry of this mass-transport complex, to explain the differentiated product and to shed light on its predisposing factors, triggers and timing.

Morphologic variability of exposed mass-transport deposits on the eastern slope of Gela Basin (Sicily channel)

Trincardi F;Asioli A;Foglini F
2007

Abstract

The NE portion of Gela Basin in the Sicily Channel is affected by multiple slope failures originated during the late-Quaternary. Basin sequences show evidence of stacked acoustically transparent and/or chaotic units, characterized by irregular upper surfaces, interpreted as mass-transport deposits. The seafloor morphology also shows evidence of both old, partially buried, as well as recent slide products. Two recent slides exposed at seafloor, only 6 km apart (Twin Slides), are similar in geomorphological parameters, age and multistage evolution. Multistage failure of Twin Slides evolved from mud flows, derived from the extensive failure of less consolidated post-glacial units, to localized slides (second stage of failure) affecting older and more consolidated materials. Although Twin Slides are very close to each other and have similar runout and fall height, they produced very dissimilar organization of the displaced masses, likely reflecting the distinct source units affected by failures. Integrating geophysical, sedimentological, structural and palaeontological data, a detailed investigation was conducted to determine the size and internal geometry of this mass-transport complex, to explain the differentiated product and to shed light on its predisposing factors, triggers and timing.
2007
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
Istituto di Scienze Marine - ISMAR
Quaternary;
slope failure;
Gela Basin;
seafloor morphology
File in questo prodotto:
File Dimensione Formato  
prod_169653-doc_31614.pdf

solo utenti autorizzati

Descrizione: Morphologic variability of exposed mass-
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 8.3 MB
Formato Adobe PDF
8.3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/150573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact